-4 B

'
N’

Artificial Intelligence
CE-417, Group 1
Computer Eng. Department
Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D. —/ —

Courtesy: Most slides are adopted from CSE-57Z3 (Washington U.)Yoriginal
slides for the textbook, and CS-188 (UC. Berkeley).
"/ |

N’ .

Informed search

. Blind vs. Heuristic Search

* Blind:

* Search in all directions systematically

* Heuristic Guidance:

* How far is the goal state from a given state approximately?

What is a “Heuristic’¢

< * An estimate of how close a state is to a goal

* Designed for a particular search problem

* Examples: Manhattan distance: 10+5 = 15; Euclidean distance: 11.2

* Actual distance to goal: 2+4+2+1+8= 17

¥ N N/

o’

Greedy Search

~ * Best first with f(n) = heuristic estimate of distance to goal

] Oradea
Neamt
- 87
] lasi
Arad
92
(_Sibiu gg Fagaras
118 \ e
80 [] Vaslui
Thilsdia Rimnicu Vilcea
o
11 o e No2dl Tite
1 Lugoj Pitesti
70 - 98 .
85 irsova
"] Mehadia 10 Urziceni
] 86
e 120 138 Bucharest
Dobreta [] 90
=l Craiova Eforie
] Giurgiu

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 08
Rimnicu Vilcea 193
Timisoarz 329
Urziceni 80
Vaslui 199
Zerind 374

N

N’

w,

e

®) How can it go wrong?

* Expand the node that seems closest...

start
B Z

> Problems with the Greedy Search

e Common case:

S—

* Best-first takes you straight to a (suboptimal) goal

* Worst-case: like a badly-guided DFS

* Can explore everything

* Can get stuck in loops if no cycle checking

* Like DFS in completeness

* Complete w/ cycle checking

e |f finite # states

-/
Properties of greedy search

\/’v Complete:

* No—can get stuck in loops, e.g., Lasi — Neamt — Lasi — Neamt —
* Complete in finite space with repeated-state checking

* Time:
* O(b™), but a good heuristic can give dramatic improvement

* Space:
* O(b™)—keeps all nodes in memory

* Optimal:
* No

- .
- A™ Search

~—

* Hart, Nilsson & Rafael 1968

* Best first search with f(n) = g(n) + h(n)
* g(n) = sum of costs from start to n

* h(n) = estimate of lowest cost path n — goal
* h(goal) =0

e Can view as cross-breed:
* g(n) ~ uniform cost search

* h(n) ~ greedy search

e Best of both worlds...

/ — A* example

Fagaras

646=280+366 A 671=291+380

/ g,
/// \\\\
Bucharest

591=338+253 450=450+0 526=366+160

C Craiova)

418=418+0 615=455+160 607=414+193

>

449=75+374

-4 A* optimality (tree-search)?

—

g

Theorem: If h(n) is admissible then A* is optimal in

tree search.

| & —
\/ A* optimality (graph-search)?

—

S’

If h(n) iIs admissible and monotonic
then A* is optimal

Underestimates (<) cost
of reaching goal from

f values never decrease
nhode

From node to descendants
(triangle inequality)

Value

Admissible Heuristics

Admissible Not Admissible

State (x) State (x)

= True (optimal) cost remaining
=== Heuristic-estimated cost remaining

~

73

N

Monotonic (or Consistent) Heuristics

Monotonic Not Monotonic (but admissible)

Value

State (x) State (x)

= True (optimal) cost remaining
=== h(X) Heuristic-estimated cost remaining
=== f(x) Heuristic + cost so far

75

Monotonicity (or consistency)

Defn monotonic:
F(a) <F(b

S

g

“e |s Manhattan distance

* Admissible

Example: Maze

* Monotonic S

for Maze?

o’

Another example: the 8-puzzle

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
hs(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S) =776
holS) =77 44-0+34+-3+1+0+2+1 = 14

\—/ [] [] []
Heuristics Dominance

“If hy(n) = hy(n) for all n (both admissible) then h, dominates h; and is better for

S

search

* Typical search costs for n-puzzle:
cd=14
* IDS = 3,473,941 nodes
* A*(h;) = 539 nodes
* A*(h,) = 113 nodes
e d=24
* IDS = 54,000,000,000 nodes
* A*(h;) = 39,135 nodes
* A*(hy) = 1,641 nodes

* Given any admissible heuristics h,, h,, h(n) = max(h4(n), h,(n)) is also admissible ;5 -/

and dominates h, h, — S

A

N Suppose some suboptimal goal (-5 has been generated and is in the queue.

—

/ \/J Optimality of A* (tree search)

Let » be an unexpanded node on a shortest path to an optimal goal ;.
Start

I N

G1@ G,

f(GQ) — g<G2> since h(GQ) = 0
g9(Gh) since G5 is suboptimal

vV V

f(n since h is admissible

Since f(G5) > f(n), A* will never select (&5 for expansion

19

‘. y monotonicity is required for optimality in the

\/ graph search@

~—

* C will not be expanded. Why?

* How does monotonicity help in avoiding such cases?

YN (U v

Optimality of A* in graph search
> P Y grap

* Lemma 1: If h(n) is monotonic, then the values of f along any path are non-decreasing.

* Lemma 2: Whenever A* selects node n for expansion, the optimal path to that node

has been found.

* Lemma 3: Optimal goal, G, has the lowest f(G) among all the goals, when selected for

expansion.
* Lemma 4: A* expands all nodes in order of non-decreasing f value.
— Optimal goal G will be expanded first

among all the goals.

— Properties of Ax -

N
S éompleie:
* Yes, if there is a lower bound on costs.
* Time:
* For uniform cost, reversible action : exponential in [relative error in h X depth of soln.]
* Space:
* Keeps all nodes in memory
* Optimal:
* Yes (when the mentioned precondition(s) are satisfied).
=

* A* expands all nodes with f(n) < C¥, some nodes with f(n) = C*, and no nodes with f(n)

> C*. 23 \./

YN (U e)

N N—
u v A* demo

N N—
u v A* demo

-y)
- A® Summary

~—

* Pros

* Produces optimal cost solution!
* Does so quite quickly (focused)

* A*is optimally efficient for any given heuristics function.
* Cons
* Maintains priority queue...

* Which can get exponentially big

* Theorem: Exponential growth will occur unless |h(n) — h*(n)| < 0(logh*(n)).

ﬁ_ e
A* is optimally efficient.
. : P y -,

~ @ Let f* be the cost of the shortest path to a goal. Consider any
algorithm A’ which has the same start node as A*, uses the same
heuristic and fails to expand some path p’ expanded by A* for which

cost(p) + h(p') < f*. Assume that A’ is optimal.

@ Consider a different search problem which is identical to the original
and on which h returns the same estimate for each path, except that
p’ has a child path p” which is a goal node, and the true cost of the
path to p" is f(p’).

o that is, the edge from p’ to p” has a cost of h(p’): the heuristic is
exactly right about the cost of getting from p’ to a goal.

@ A’ would behave identically on this new problem.
e The only difference between the new problem and the original problem

is beyond path p’, which A’ does not expand. j

@ Cost of the path to p” is lower than cost of the path found by A’. oA

@ This violates our assumption that A’ is optimal. /
S’ 5\

\/ lterative-Deepening A*

* Like iterative-deepening depth-first,
but...

* Depth bound modified to be an f-limit
e Start with f-limit = h(start)

* Perform depth-first search (using stack,

no queue)

* Prune any node if f(node) > f-limit

* Next f-limit = min-cost of any node

pruned

IDA* Analysis

~

* Complete & Optimal (like A*)
* Space usage X depth of solution

* Each iteration is DFS - no priority queuel

* nodes expanded relative to A* 2
* Depends on # unique values of heuristic function

* In traveling salesman: each f value is unique = 1+2+...+n = O(n?) where n = nodes A*

expands
* if nis too big for main memory, n? is too long to wait!

* In 8 puzzle: few values = close to # A* expands

Forgetfulness

* A* used exponential memory

e Simplified memory-bounded A* : SMA*

e Store all expanded (unlike A*) and open nodes in the memory.
* If memory is full,

* deletes the leaf with highest f value and backs up the value in its parent.

1)

2)

f of the nodes get
updated, once all
the children of the
node are opened.
If a goal state is
opened and no
node or backed up
node has a lower f
value, the algorithm
would terminate.

A
0+12=12
10 8
B G
10+5=15 8+5=13
10 10 8 16
C D H I
20+5=25 ' 2040=20 1642=18 . 24+0=24
10 10 8 8
E I] K
3045=35 3040=30 24+0=24 24+5=29

31

S

1. At each stage, one successor is added to the deepest lowest-f-cost node that has some
successors not currently in the tree. The left child B is added to the root A.

. Now f(A) is still 12, so we add the right child G (f = 13). Now that we have seen all the

Q children of A, we can update its f-cost to the minimum of its children, that is, 13. The
memory is now full.

3. G is now designated for expansion, but we must first drop a node to make room. We drop
the shallowest highest-f-cost leaf, that is, B. When we have done this, we note that A’s best
forgotten descendant has f = 15, as shown in parentheses. We then add H, with f(H) = 18.
Unfortunately, H is not a goal node, but the path to H uses up all the available memory.
Hence, there is no way to find a solution through H, so we set f(H) = oc.

4. G is expanded again. We drop H, and add I, with f(/) = 24. Now we have seen both
successors of G, with values of oo and 24, so f(G) becomes 24. f(A) becomes 15, the
minimum of 15 (forgotten successor value) and 24. Notice that I is a goal node, but it
might not be the best solution because A’s f-cost is only 15.

5. A is once again the most promising node, so B is generated for the second time. We have
found that the path through G was not so great after all.

6. C, the first successor of B, is a nongoal node at the maximum depth, so f(C) = oo.

7. To look at the second successor, D, we first drop C. Then f(D) = 20, and this value is
inherited by B and A.

. Now the deepest, lowest-f-cost node is D. D is therefore selected, and because it is a goal

C<

(’\
o

node, the search terminates.

</ ¢ o

Q Demo: Different search methods

http: //qgico.github.io /PathFinding.js /visual /

http://qiao.github.io/PathFinding.js/visual/

