
Artificial Intelligence
CE-417, Group 1

Computer Eng. Department
Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original 
slides for the textbook, and CS-188 (UC. Berkeley). 

1



Informed search

2



Blind vs. Heuristic Search

• Blind: 

• Search in all directions systematically 

• Heuristic Guidance:
• How far is the goal state from a given state approximately? 

3



What is a “Heuristic”?
• An estimate of how close a state is to a goal 

• Designed for a particular search problem 

• Examples: Manhattan distance: 10+5 = 15; Euclidean distance: 11.2

• Actual distance to goal: 2+4+2+1+8= 17 4



Greedy Search 
• Best first with f(n) = heuristic estimate of distance to goal 

5



How can it go wrong?

• Expand the node that seems closest... 

6



Problems with the Greedy Search
• Common case:

• Best-first takes you straight to a (suboptimal) goal 

• Worst-case: like a badly-guided DFS 
• Can explore everything

• Can get stuck in loops if no cycle checking 

• Like DFS in completeness 

• Complete w/ cycle checking

• If finite # states 

7



Properties of greedy search 

• Complete: 

• No–can get stuck in loops, e.g., Lasi → Neamt → Lasi → Neamt →
• Complete in finite space with repeated-state checking

• Time:

• O(bm), but a good heuristic can give dramatic improvement 

• Space: 

• O(bm)—keeps all nodes in memory

• Optimal:
• No 

8



A* Search 

• Hart, Nilsson & Rafael 1968 

• Best first search with f(n) = g(n) + h(n)

• g(n) = sum of costs from start to n

• h(n) = estimate of lowest cost path n → goal 

• h(goal) = 0 

• Can view as cross-breed: 

• g(n) ~ uniform cost search 

• h(n) ~ greedy search 

• Best of both worlds... 
9



A* example

10



A* optimality (tree-search)?

11

Theorem: If h(n) is admissible then A* is optimal in 
tree search. 



A* optimality (graph-search)?

12



Admissible Heuristics

13



Monotonic (or Consistent) Heuristics

14



Monotonicity (or consistency)

15



Example: Maze 

• Is Manhattan distance

• Admissible 

• Monotonic 

for Maze?

16



Another example: the 8-puzzle

17



Heuristics Dominance
• If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1 and is better for 

search 

• Typical search costs for n-puzzle: 
• d = 14

• IDS = 3,473,941 nodes 

• A∗(h1) = 539 nodes

• A∗(h2) = 113 nodes

• d = 24 
• IDS ≈ 54,000,000,000 nodes 

• A∗(h1) = 39,135 nodes 

• A∗(h2) = 1,641 nodes 

• Given any admissible heuristics ha, hb, h(n) = max(ha(n), hb(n)) is also admissible 
and dominates ha, hb

18



Optimality of A* (tree search) 

19



Why monotonicity is required for optimality in the 
graph search?

20

• C will not be expanded. Why?

• How does monotonicity help in avoiding such cases?



Optimality of A* in graph search
• Lemma 1: If h(n) is monotonic, then the values of f along any path are non-decreasing. 

• Lemma 2: Whenever A* selects node n for expansion, the optimal path to that node 
has been found. 

• Lemma 3: Optimal goal, G, has the lowest f(G) among all the goals, when selected for 
expansion.

• Lemma 4: A* expands all nodes in order of non-decreasing f value.

⟹ Optimal goal G will be expanded first 

among all the goals. 

21



22



Properties of A∗

• Complete: 

• Yes, if there is a lower bound on costs.

• Time:
• For uniform cost, reversible action : exponential in [relative error in h × depth of soln.]

• Space:

• Keeps all nodes in memory

• Optimal:

• Yes (when the mentioned precondition(s) are satisfied). 

• A∗ expands all nodes with f(n) < C∗, some nodes with f(n) = C∗, and no nodes with f(n) 
> C∗. 23



A* demo

24



A* demo

25



A* Summary 

• Pros

• Produces optimal cost solution! 

• Does so quite quickly (focused) 

• A* is optimally efficient for any given heuristics function. 

• Cons

• Maintains priority queue... 

• Which can get exponentially big

• Theorem: Exponential growth will occur unless ℎ 𝑛 − ℎ∗(𝑛) ≤ 𝑂 log ℎ∗ 𝑛 .

26



27



Iterative-Deepening A* 

• Like iterative-deepening depth-first, 
but... 

• Depth bound modified to be an f-limit

• Start with f-limit = h(start)

• Perform depth-first search (using stack, 
no queue) 

• Prune any node if f(node) > f-limit

• Next f-limit = min-cost of any node 
pruned 

28



IDA* Analysis 

• Complete & Optimal (like A*)

• Space usage ∝ depth of solution

• Each iteration is DFS - no priority queue! 

• nodes expanded relative to A* ?

• Depends on # unique values of heuristic function 

• In traveling salesman: each f value is unique ⟹ 1+2+...+n = O(n2) where n = nodes A* 
expands 

• if n is too big for main memory, n2 is too long to wait! 

• In 8 puzzle: few values ⟹ close to # A* expands 

29



Forgetfulness

• A* used exponential memory 

• Simplified memory-bounded A* : SMA*

• Store all expanded (unlike A*) and open nodes in the memory. 

• If memory is full,

• deletes the leaf with highest f value and backs up the value in its parent.

30



31

1) f of the nodes get 
updated, once all 
the children of the 
node are opened. 

2) If a goal state is 
opened and no 
node or backed up 
node has a lower f 
value, the algorithm 
would terminate. 



32



Demo: Different search methods

http://qiao.github.io/PathFinding.js/visual/

33

http://qiao.github.io/PathFinding.js/visual/

